FieldingPost data
FieldingPost.Rd
Post season fielding data
Usage
data(FieldingPost)
Format
A data frame with 16606 observations on the following 17 variables.
playerID
Player ID code
yearID
Year
teamID
Team; a factor
lgID
League; a factor with levels
AL
NL
round
Level of playoffs
POS
Position
G
Games
GS
Games Started
InnOuts
Time played in the field expressed as outs
PO
Putouts
A
Assists
E
Errors
DP
Double Plays
TP
Triple Plays
PB
Passed Balls
SB
Stolen Bases allowed (by catcher)
CS
Caught Stealing (by catcher)
Source
Lahman, S. (2024) Lahman's Baseball Database, 1871-2023, 2024 version, http://www.seanlahman.com/
Examples
require("dplyr")
## World Series fielding record for Yogi Berra
FieldingPost %>%
filter(playerID == "berrayo01" & round == "WS")
#> playerID yearID teamID lgID round POS G GS InnOuts PO A E DP TP PB SB CS
#> 1 berrayo01 1947 NYA AL WS C 4 3 86 19 2 2 0 0 0 NA NA
#> 2 berrayo01 1947 NYA AL WS RF 2 1 36 3 0 0 0 0 NA NA NA
#> 3 berrayo01 1949 NYA AL WS C 4 4 108 37 3 0 1 0 0 NA NA
#> 4 berrayo01 1950 NYA AL WS C 4 4 111 30 1 0 1 0 0 NA NA
#> 5 berrayo01 1951 NYA AL WS C 6 6 159 27 3 1 0 0 1 NA NA
#> 6 berrayo01 1952 NYA AL WS C 7 7 192 59 7 1 1 0 1 NA NA
#> 7 berrayo01 1953 NYA AL WS C 6 6 156 37 3 0 1 0 0 NA NA
#> 8 berrayo01 1955 NYA AL WS C 7 7 180 40 4 0 1 0 0 NA NA
#> 9 berrayo01 1956 NYA AL WS C 7 7 185 50 3 0 0 0 0 NA NA
#> 10 berrayo01 1957 NYA AL WS C 7 7 187 45 2 1 0 0 0 NA NA
#> 11 berrayo01 1958 NYA AL WS C 7 7 191 60 6 0 1 0 1 NA NA
#> 12 berrayo01 1960 NYA AL WS C 3 2 54 13 1 0 0 0 0 NA NA
#> 13 berrayo01 1960 NYA AL WS LF 3 3 60 4 0 0 0 0 NA NA NA
#> 14 berrayo01 1960 NYA AL WS RF 1 0 9 1 0 0 0 0 NA NA NA
#> 15 berrayo01 1961 NYA AL WS LF 4 4 108 11 0 1 0 0 NA NA NA
#> 16 berrayo01 1962 NYA AL WS C 1 1 24 6 1 0 0 0 0 NA NA
## Yogi's career efficiency in throwing out base stealers
## in his WS appearances and CS as a percentage of his
## overall assists
FieldingPost %>%
filter(playerID == "berrayo01" & round == "WS" & POS == "C") %>%
summarise(cs_pct = round(100 * sum(CS)/sum(SB + CS), 2),
cs_assists = round(100 * sum(CS)/sum(A), 2))
#> cs_pct cs_assists
#> 1 NA NA
## Innings per error for several selected shortstops in the WS
FieldingPost %>%
filter(playerID %in% c("belanma01", "jeterde01", "campabe01",
"conceda01", "bowala01"), round == "WS") %>%
group_by(playerID) %>%
summarise(G = sum(G),
InnOuts = sum(InnOuts),
Eper9 = round(27 * sum(E)/sum(InnOuts), 3))
#> # A tibble: 5 × 4
#> playerID G InnOuts Eper9
#> <chr> <int> <int> <dbl>
#> 1 belanma01 22 504 0.268
#> 2 bowala01 6 161 0
#> 3 campabe01 19 516 0.209
#> 4 conceda01 19 482 0.168
#> 5 jeterde01 38 1027 0.079
## Top 10 center fielders in innings played in the WS
FieldingPost %>%
filter(POS == "CF" & round == "WS") %>%
group_by(playerID) %>%
summarise(inn_total = sum(InnOuts)) %>%
arrange(desc(inn_total)) %>%
head(., 10)
#> # A tibble: 10 × 2
#> playerID inn_total
#> <chr> <int>
#> 1 dimagjo01 1370
#> 2 mantlmi01 1364
#> 3 willibe02 880
#> 4 snidedu01 868
#> 5 floodcu01 558
#> 6 mcgeewi01 542
#> 7 speaktr01 537
#> 8 whitede03 516
#> 9 grissma02 515
#> 10 hendeda01 508
## Most total chances by position
FieldingPost %>%
filter(round == "WS" & !(POS %in% c("DH", "OF", "P"))) %>%
group_by(POS, playerID) %>%
summarise(TC = sum(PO + A + E)) %>%
arrange(desc(TC)) %>%
do(head(., 1)) # provides top player by position
#> `summarise()` has grouped output by 'POS'. You can override using the `.groups`
#> argument.
#> # A tibble: 8 × 3
#> # Groups: POS [8]
#> POS playerID TC
#> <chr> <chr> <int>
#> 1 1B hodgegi01 353
#> 2 2B friscfr01 247
#> 3 3B gardnla01 97
#> 4 C berrayo01 464
#> 5 CF dimagjo01 151
#> 6 LF gosligo01 68
#> 7 RF bauerha01 81
#> 8 SS rizzuph01 259